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Fig. 3

{ Start }

\d

Processor 1 writes data
511
to TX in TCM 1 S0

;e S ——
| L 4 |
! l
! Processor 2 reads dala !

—-§121
! in TX of TCM 1 s121
J l
I F~ 5120
| v :
j : !
| Procgssor 2 writes data L _g100 |
: into RX of TCM 2 :
| |
R SR e |

A 4
Processor 2 processes
~.-5130
data in RX of TCM 2

fnd



US 9,274,860 B2

Sheet 4 of 11

Mar. 1, 2016

U.S. Patent

1Se—4— i844ng
0G¢— viNa
A sng
ve—~44 Xl ccc—4H XL
“ M lo1s1b8y lo1s1bay
lwe—~41 Xd lec—~41 Xd
¢haL \ HNOL \
\ LeC x LS
0bz 210s85800.d 0ez | 10SS820 14
\\s 0ge 0lc
0ov
v 91




US 9,274,860 B2

Sheet 5 of 11

Mar. 1, 2016

U.S. Patent

| L}
ose~—~1 | YO |
! L
| @ | ‘ leud|s be|4
! {
< et ._
| |
[ ———— 4 |eud|g e |
_ reeTTT
| : |
i |
| J
ez~ Xt m cee—~ XL LLZ_].
! 1a1s1Bey 1813108y
| <>
wz—~41 ¥ [CZ_J1. lgz—~44 X
oL K> 7 0L 7
/ 1£2 7 LiZ
i [ m
0bz 21085800 id 052 1 i0SS9001d
[ (
087 0ig

914



U.S. Patent Mar. 1, 2016 Sheet 6 of 11 US 9,274,860 B2

Fig. 6
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MULTI-PROCESSOR DEVICE AND
INTER-PROCESS COMMUNICATION
METHOD THEREOF

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. §119 to
Korean Patent Application No. 10-2010-0046986, filed on
May 19, 2010, in the Korean Intellectual Property Office, and
entitled: “Multi-Processor Device and Inter-Process Commu-
nication Method Thereof,” which is incorporated by refer-
ence herein in its entirety. is incorporated by reference herein
in its entirety.

BACKGROUND

1. Field

The present disclosure herein relates to processor devices
and, more particularly, to a multi-processor device and an
inter-process communication method thereof.

2. Description of the Related Art

Inrecentyears, multi-processors are gaining importance as
performance improvements of single processors is becoming
harder to achieve with increased limitations. Various efforts
on performance improvements achieved by increasing clock
speed were made to improve performance of processors.
However, recently more studies are focusing on multi-pro-
cessors whose functions are improved by increasing the num-
ber of processors.

A typical multi-processor device includes a shared
memory to perform inter-process communication (IPC). That
is, one processor (processor “A”) stores data to be processed
by another processor (processor “B”) in the shared memory.
The processor “B” accesses the data stored in the shared
memory to process the data.

In this case, the processor “B” cannot write data into the
shared memory while the processor “A” writes data into the
shared memory. That is, write waiting time occurs. The write
waiting time causes speed of a multi-processor device to
decrease.

SUMMARY

One or more embodiments provide a multi-processor
device.

One or more embodiments may provide a multi-processor
device, including a first processor, a second processor, a first
memory connected to the first processor, and a second
memory connected to the second processor, wherein each of
the first processor and the second processor is configured to
perform an inter-process communication (IPC) operation for
exchanging data between the first memory and the second
memory.

The first memory may include a first transmission region
configured to store data to be transmitted to the second
memory and a first reception region configured to store data
received from the second memory, and wherein the second
memory may include a second transmission region config-
ured to store data to be transmitted to the first memory and a
second reception region configured to store data received
from the first memory.

The data stored in the first transmission region may be
copied to the second reception region and the data stored in
the second transmission region may be copied to the first
reception region when an IPC operation is performed
between the first processor and the second processor.
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The first processor may copy the data stored in the second
transmission region to the first reception region and the sec-
ond processor may copy the data stored in the first transmis-
sion region to the second reception region when an IPC opera-
tion is performed between the first processor and the second
processor.

The first processor may perform a copy operation in
response to an interrupt signal received from the second pro-
cessor and the second processor may perform a copy opera-
tion in response to an interrupt signal received from the first
processor.

The multi-processor device may further include a direct
memory access (DMA) configured to copy the data stored in
the first transmission region to the second reception region
and copy the data stored in the second transmission region to
the first reception region when an IPC operation is performed
between the first processor and the second processor.

The DMA may be configured to perform a copy operation
in response to a flag signal received from the first processor or
the second processor.

The DMA may include a buffer configured to temporarily
store the data stored in the first transmission region or the
second transmission region.

The first memory may include a transmission region con-
figured to store data to be transmitted to the second memory,
and a reception region configured to store data received from
the second memory.

Data may be written into the transmission region using a
circular queue.

The circular queue may include at least two nodes config-
ured to store data, and first and second pointers configured to
indicate address values of the at least two nodes, wherein the
first and second pointers may have different address values
when data is stored in the at least two nodes.

The second processor may determine whether the address
values of the first and second pointers are identical to each
other and copies data stored in the first memory to the second
memory when the addresses values of the first and second
pointers are different from each other.

A direct memory access (DMA) may be configured to
determine whether the address values of the first and second
pointers are identical to each other and copy data stored in the
first memory to the second memory when the address values
of'the first and second pointers are different from each other.

One or more embodiments may provide an inter-process
communication (IPC) method of a multi-processor device
provided with a first processor and a second processor, the
IPC method including storing data into a first memory con-
nected to the first processor, copying the data stored in the first
memory to a second memory connected to the second pro-
cessor, and processing the data copied to the second memory.

The copying may be performed by the second processor.

The multi-processor device may further include a direct
memory access (DMA) configured to perform the copying.

The first memory may include a transmission region con-
figured to store data to be transmitted to the second memory,
and the DMA may copy data stored in the transmission region
to the second memory.

Data may be written into the first and second memories
using a circular queue.

The circular queue may include at least two nodes config-
ured to store data and first and second pointers configured to
indicate address values of the at least two nodes, and the IPC
method further include determining whether the address val-
ues of the first and second pointers are identical to each other.
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An IPC operation may be performed when the address
values of the first and second pointers are different from each
other.

One or more embodiments may provide a multi-processor
device, including a first processor, a second processor, a first
memory connected to the first processor and including a first
transmission region and a first reception region, and a second
memory connected to the second processor and including a
second transmission region and a second reception region,
wherein data to be transmitted to the second processor may be
stored in the first transmission region while data to be trans-
mitted to the first processor may be stored in the second
transmission region.

Data to be transmitted to the second processor may be
stored in the first transmission region before being stored in
the second reception region, and data to be transmitted to the
first processor may be stored in the second transmission
region before being stored in the first reception region.

The first transmission region may be configured to store
data from the first processor to be transmitted to the second
reception region, and the first reception region is configured
to store data to be processed by the first processor, the second
transmission region may be configured to store data from the
second processor to be transmitted to the first processor, and
the second reception region is configured to store data to be
processed by the second processor.

BRIEF DESCRIPTION OF THE DRAWINGS

Features will become more apparent to those of ordinary
skill in the art by describing in detail exemplary embodiments
with reference to the attached drawings, in which:

FIG. 1 illustrates a block diagram of an exemplary embodi-
ment of a multi-processor device;

FIG. 2 illustrates a block diagram of an exemplary inter-
process communication operation of the multi-processor
device shown in FIG. 1;

FIG. 3 illustrates a flowchart of an exemplary inter-process
communication operation of the multi-processor device
shown in FIG. 1;

FIG. 4 illustrates a block diagram of another exemplary
embodiment of a multi-processor device;

FIG. 5 illustrates a block diagram of an exemplary inter-
process communication operation of the multi-processor
device shown in FIG. 4;

FIG. 6 illustrates a flowchart of an exemplary inter-process
communication operation of the multi-processor device
shown in FIG. 4;

FIG. 7 illustrates a schematic diagram of an exemplary
circular queue in an initial state;

FIG. 8 illustrates a schematic diagram of an exemplary data
push operation of the circular queue shown in FIG. 7;

FIG. 9 illustrates a schematic diagram of an exemplary data
POP operation of the circular queue shown in FIG. 7;

FIG. 10 illustrates a flowchart of an exemplary inter-pro-
cess communication operation of another exemplary embodi-
ment of a multi-processor device;

FIG. 11 illustrates a block diagram of an exemplary
embodiment of an electric device including a multi-processor
device employing one or more features described herein; and

FIG. 12 illustrates a block diagram of an exemplary
embodiment of a data storage device including a multi-pro-
cessor device employing one or more features described
herein.

DETAILED DESCRIPTION

Exemplary embodiments will now be described more fully
hereinafter with reference to the accompanying drawings;
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however, they may be embodied in different forms and should
not be construed as limited to the embodiments set forth
herein. Rather, these embodiments are provided so that this
disclosure will be thorough and complete, and will fully
convey the scope of the invention to those skilled in the art.

It will also be understood that when an element is referred
to as being “connected to” or “coupled to” another element, it
can be directly connected or coupled to the other element, or
one or more intervening elements may also be present. Fur-
ther, it will be understood that, although the terms first, sec-
ond, etc. may be used herein to describe various elements,
these elements should not be limited by these terms. These
terms are only used to distinguish one element from another
element. Thus, for example, a first element, a first component
or a first section discussed below could be termed a second
element, a second component or a second section without
departing from the teachings of the disclosure.

FIG. 1 illustrates a block diagram of an exemplary embodi-
ment of a multi-processor device 100. The multi-processor
device 100 includes at least two processors. A multi-proces-
sor device 100 including two processors is exemplarily shown
in FIG. 1.

Referring to FIG. 1, the multi-processor device 100 may
include a first processor 110, a first tightly coupled memory
(TCM) 120, a second processor 130, and a second TCM 140.

The first processor 110 and the second processor 130 may
perform a task divisionally. The first processor 110 and the
second processor 130 may operate independently. In order to
perform one task together, the first processor 110 and the
second processor 130 must exchange data according to a
series of rules. For example, transmission or reception of data
between the first processor 110 and the second processor 130
may be referred to as “inter-process communication (IPC)”.

The first processor 110 and the second processor 130 may
include a first register 111 and a second register 131, respec-
tively. For example, data to be transmitted by inter-process
communication (IPC) may be stored in the first register 111
and the second register 131. For example, data received by the
IPC may be stored in the first register 111 and the second
register 131.

In one or more embodiments, the first processor 110 and
the second processor 130 may be the same kind of processors.
That is, the multi-processor device 100 shown in FIG. 1 may
have a symmetric multi-processor (SMP) structure. For
example, the first processor 110 and the second processor 130
may perform parallel processing for a task. For example, the
first processor 110 and the second processor 130 may process
a task assigned at a threshold level. For example, the first
processor 110 and the second processor 130 may process a
task assigned at an instruction level.

In one or more embodiments, the first processor 110 and
the second processor 130 may be different kinds of proces-
sors. That is, the multi-processor device 100 shown in FIG. 1
may have an asymmetric multi-processor (AMP) structure.
For example, the first processor 110 may be an advanced
RISC machine (ARM) processor and the second processor
130 may be a digital signal processing (DSP) processor.

The first tightly coupled memory (TCM) 120 may be con-
nected to the first processor 110. The first TCM 120 may
include a reception region 121 and a transmission region 122.
The second TCM 140 may be connected to the second pro-
cessor 130. The second TCM 120 may include a reception
region 141 and a transmission region 142.

For example, when inter-process communication (IPC) is
performed, data stored in the transmission region 142 of the
second TCM 140 may be copied to the reception region 121
of the first TCM 120. For example, data stored in the trans-
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mission region 122 of'the first TCM 120 may be copied to the
reception 141 of the second TCM 140.

Similarly, e.g., data stored in the transmission region 122 of
the first TCM 120 may be copied to the reception region 141
of the second TCM 140. For example, data stored in the
transmission region 142 of the second TCM 140 may be
copied to the reception region 121 of the first TCM 120.

In general, a multi-processor device includes a shared
memory to perform inter-process communication (IPC). For
example, one processor (processor “A”) writes data to be
transmitted to another processor (processor “B”) in the shared
memory. The processor “B” reads and processes the data
stored in the shared memory. In this case, the processor “B”
cannot write data in the shared memory while the processor
“A” writes data into the shared memory. In such cases, write
waiting time occurs.

In one or more embodiments, the multi-processor device
100 shown in FIG.1 includes a tightly coupled memory
(TCM) to perform inter-process communication (IPC). That
is, the first processor 110 and the second processor 130 may
write data into the first TCM 120 and the second TCM 140,
respectively. One or more embodiments improve data pro-
cessing time by reducing and/or eliminating write waiting
times by employing TCM.

In addition, in one or more embodiments, the tightly
coupled memories (TCMs), e.g., TCM1 120, TCM2 140, of
the multi-processor device 100 may each include a reception
region RX, e.g., 121, 141, and a transmission region TX, e.g.,
122, 142. Each of processors, e.g., 110, 130, may write data
into their reception region RX, e.g., 121, 141, from another of
the processors via, e.g., another of TCMs, while processing
data stored in their transmission region TX, e.g., 122, 142 to
another of the processors. As a result, data processing speed
may be improved. The operation of the multi-processor
device 100 according to an embodiment of the inventive
concept will now be described hereinafter in detail.

FIG. 2 illustrates a block diagram of an exemplary inter-
process communication operation of the multi-processor
device 100 shown in FIG. 1. For brevity of explanation, an
exemplary scenario of an inter-process communication
operation from the first processor 110 to the second processor
130 is described below. More particularly, an exemplary sce-
nario of data being transmitted from the first processor 110 to
the second processor 130 is described below.

The first processor 110 may store data to be processed by
the second processor 130 in a first register 111. The first
processor 110 may write the data stored in the first region 111
into the transmission region 122 of the first TCM 120. There-
after, the first processor 110 may transmit an interrupt signal
to the second processor 130. That is, the first processor 110
may inform the second processor 130 that data is written into
the transmission region 122 of the first TCM 120.

The second processor 130 may copy the data stored in the
transmission region 122 of the first TCM 120 to the reception
region 141 ofthe second TCM 140 in response to the interrupt
signal.

More specifically, the second processor 130 may access the
transmission region 122 of the first TCM 120 in response to
the interrupt signal. The second processor 130 may read the
data stored in the transmission region 122 and write the read
data into the reception region 141 of the second TCM 140.
Thereafter, the second processor 130 may write the data
stored in the reception region 141 of the second TCM 140 into
the second register 131. The second processor 130 may then
process the data stored in the second register 131.

AnIPC operation from the second processor 130 to the first
processor 110 is similar to the IPC operation from the first
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processor 110 to the second processor 130. Therefore, a
description thereof will not be repeated.

FIG. 3 illustrates a flowchart of an exemplary inter-process
communication operation of the multi-processor device 100
shown in FIG. 1. For brevity of explanation, it is assumed that
an inter-process communication operation from the first pro-
cessor 110 to the second processor 130 is performed.

At S110, the first processor 110 may write data into the
transmission region 122 of the first TCM 120. That is, the first
processor 110 may write data to be processed by the second
processor 130 into the transmission region 122 of the first
TCM 120. In one or more embodiments, the first processor
110 may transmit an interrupt signal to the second processor
130.

At 8120, the data stored in the transmission region 122 of
the first TCM 120 may be copied to the reception region 141
of the second TCM 140.

More specifically, the second processor 130 may read the
data stored in the transmission region 122 of the first TCM
120 (S121). That is, the second processor 130 may access the
transmission region 122 of the first TCM 120 in response to an
interrupt signal and may perform a read operation for the data
stored in the transmission region 122. Thereafter, the second
processor 130 may write the read data into the reception
region 141 of the second TCM 140 (S122).

At S130, the second processor 130 may process the data
stored in the reception region 141 of the second TCM 140.
That is, the second processor 130 may write the data stored in
the reception region 141 of the second TCM 140 into the
second register 131. The second processor 130 may process
the data stored in the second register 131.

FIG. 4 illustrates a block diagram of an exemplary embodi-
ment of a multi-processor device 400. The multi-processor
device 400 may include at least two processors. While FIG. 4
illustrates the multi-processor device 400 including two pro-
cessors, embodiments are not limited to two processors.

Referring to FIG. 4, the multi-processor device 400 may
include a first processor 210, a first TCM 220, a second
processor 230, a second TCM 240, and a direct memory
access (DMA). The multi-processor device 400 shown in
FIG. 4 is similar to the multi-processor device 100 shown in
FIG. 1. In general, only the differences between the exem-
plary multi-processor device 100 of FIG. 1 and the exemplary
multi-processor device 400 of FIG. 4 will be described below.

The first processor 210 and the second processor 230 may
include a first register 211 and a second register 231, respec-
tively. The first processor 210 may be connected to the first
TCM 220, and the second processor 230 may be connected to
the second TCM 240. The first processor 210 and the second
processor 230 may be similar to the first processor 110 and the
second processor 130 shown in FIG. 1.

The first TCM 220 may include a transmission region 222
and a reception region 221. The second TCM 240 may
include a transmission region 242 and a reception region 241.
The first TCM 220 and the second TCM 240 may be similar
to the first TCM 120 and the second TCM 140 shown in FIG.
1.

Referring to FIG. 4, the multi-processor device 200
includes the direct memory access (DMA) 250. The DMA
250 may include a buffer 251 therein. The DMA 250 may
control a data transmission operation between the first TCM
220 and the second TCM 240.

For example, when inter-process communication (IPC) is
performed, the DMA 250 may access the first TCM 220 or the
second TCM 240. For example, the DMA 250 may store data
stored in the transmission region 222 of the first TCM 220 in
the buffer 251 and may copy the data stored in the buffer 251
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to the reception region 241 of the second TCM 240. For
example, the DMA 250 may store the data stored in the
transmission region 242 of the second TCM 220 and may
copy the data stored in the transmission region 242 to the
reception region 221 of the first TCM 220.

The multi-processor device 200 may use a tightly coupled
memory (TCM) to perform inter-process communication
(IPC). That is, the first processor 220 and the second proces-
sor 230 may write data into the first TCM 220 and the second
TCM 240, respectively. Thus, write waiting time may be
eliminated and data processing speed may be improved.

In addition, tightly coupled memories (TCMs) of the multi-
processor device 400 shown in FIG. 4 may each include a
reception region RX and a transmission region TX. Thus,
each processor may write data into the transmission region
TX thereof while processing data stored in the reception
region RX thereof and two or more of the processors may
carry out such functions simultaneously. More particularly,
e.g., the first processor 210 may store data to be transmitted to
the second processor 230 in the first TCMs transmission
region 222 and/or the first processor may access the data
stored in the second TCMs transmission region 242 while the
second processor 230 stores data to be transmitted to the first
processor 210 in the second TCMs transmission region 242
and/or the second processor 230 access the data stored in the
first TCMs transmission region 222. As a result, data process-
ing speed may be improved. An exemplary operation of the
multi-processor device 400 will now be described hereinafter
in detail.

FIG. 5 illustrates a block diagram of an exemplary inter-
process communication operation of the multi-processor
device 400 shown in FIG. 4. For brevity of explanation, an
exemplary scenario of an inter-process communication
operation from the first processor 210 to the second processor
230 is described below. More particularly, an exemplary sce-
nario of data being transmitted from the first processor 210 to
the second processor 230 is described below.

The first processor 210 may store data to be processed by
the second processor 230 in the first register 211. The first
processor 210 may write the data stored in the first register
211 into the transmission region 222 of the first TCM 220.
Thereafter, the first processor 210 may transmit a flag signal
to the DMA 250. More particularly, e.g., the first processor
210 may inform the DMA 250 that data is written into the
transmission region 222.

The DMA 250 may copy the data stored in the transmission
region 222 of'the first TCM 220 to the reception region 241 of
the second TCM 240 in response to the flag signal.

More specifically, the DMA 250 may access the transmis-
sion region 222 of the first TCM 220 in response to a flag
signal. The DMA 250 may read the data stored in the trans-
mission region 222 and may store the data stored in the
transmission region 222 in the buffer 251. The DMA 250 may
access the reception region 241 of the second TCM 240. The
DMA 250 may write the data stored in the buffer 251 into the
reception region 241. Thereafter, the DMA 250 may transmit
the flag signal to the second processor 230. That is, the DMA
250 may inform the second processor 230 that the data is
written into the reception region 241 of the second TCM 240.

The second processor 230 may write the data stored in the
reception region 241 of the second TCM 240 into the second
register 231. The second processor 230 may process the data
stored in the second register 231.

An inter-process communication (IPC) operation from the
second processor 230 to the first processor 210 may be similar
to the IPC operation from the first processor 210 to the second
processor 230 and will not be explained in further detail.
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It should be understood that the above explanations are
exemplary and embodiments are not limited thereto.

Referring to FIG. 5, e.g., in one or more embodiments, the
first processor 210 may transmit a flag signal to the DMA 250.
While a flag signal is employed in the exemplary embodiment
of FIG. 5, in one or more other embodiments, e.g., the first
processor 210 may not generate a tlag signal. More particu-
larly, e.g., the DMA 250 may frequently access the transmis-
sion region 222 of the first TCM 220. When there is new data
in the transmission region 222 of the first TCM 220, the DMA
250 may copy the data of the transmission region 222 of the
first TCM 220 to the reception region 241 of'the second TCM
240.

Referring still to FIG. 5, in one or more embodiments, the
DMA 250 may transmit a flag signal to the second processor
230. While a flag signal is employed in the exemplary
embodiment of FIG. 5, in one or more other embodiments,
e.g., the DMA 250 may not generate a flag signal. In one or
more embodiments, e.g., the second processor 230 may fre-
quently access the reception region 241 of the second TCM
240. When there is new data in the reception region 241 of the
second TCM 240, the second processor 230 may copy the
data of the reception region 241 of the second TCM 240 to the
second register 231.

Moreover, it has been explained in FIGS. 1 to 6 that an
inter-process communication (IPC) operation may be per-
formed using a tightly coupled memory (TCM). However, it
will be understood that these explanations are exemplary. For
example, the TCM in FIGS. 1 to 5 may be substituted with a
cache memory.

FIG. 6 illustrates a flowchart of an exemplary embodiment
of an inter-process communication operation of the multi-
processor device 200 shown in FIG. 4. An exemplary scenario
of an inter-process communication (IPC) operation from the
first processor 210 to the second processor 230 is described
below.

At 8210, the first processor 210 may write data into the
transmission region 222 of the first TCM 220. That is, the first
processor 210 may write data to be processed by the second
processor 230 into the transmission region 222 of the first
TCM 220.

At 8220, the data stored in the transmission region 222 of
the first TCM 220 may be copied to the reception region 241
of the second TCM 240.

More particularly, the DMA 250 may access the transmis-
sion region 222 of the first TCM 220 (S221). The data stored
in the transmission region 222 of the first TCM 220 may be
stored in the buffer 251 of the DMA 250 (S222). That is, the
DMA 250 may read the data stored in the transmission region
222 of the first TCM 220 and may store the read data in the
buffer 251. The DMA 250 may write the data stored in the
buffer 251 into the reception region 241 of the second TCM
240 (S223).

At S230, the second processor 230 may process the data
stored in the reception region 241 of the second TCM 240. For
example, the second processor 230 may write the data stored
in the reception region 241 of the second TCM 240 into the
second register 231. The second processor 230 may process
the data stored in the second register 231.

Data may be written into a reception region RX or a trans-
mission region TX of a tightly coupled memory (TCM) in
FIG. 1 or 4 using various methods. An exemplary method for
writing data into a reception region RX or a transmission
region TX of a tightly coupled memory (TCM) will be
described below.

FIGS. 7 to 9 illustrate diagrams for explaining an exem-
plary method for writing data into a reception region RX or a
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transmission region TX of a TCM. More particularly, FIGS. 7
to 9 illustrate schematic diagrams for describing an exem-
plary method for writing data into a reception region RX or a
transmission region TX of a TCM using a circular queue. In
one or more embodiments, the TCM may include a first TCM
and/or a second TCM shown in FIG. 1 or 4.

A circular queue according to an embodiment of the inven-
tive concept may include N nodes (N being an integer greater
than or equal to 2). As an example, a circular queue in FIGS.
7 to 9 may include six nodes. The circular queue may include
a front pointer and a rear pointer.

FIG. 7 illustrates a schematic diagram of an exemplary
circular queue in an initial state. The term “initial state”
corresponds to a state where data is not stored in first to sixth
nodes N1~N6.

Referring to FIG. 7, a front pointer and a rear pointer of the
circular queue may have the same address value in the initial
state. That is, the front pointer and the rear pointer of the
circular queue may indicate the same node in the initial state.

For example, the front pointer and the rear pointer may
each have an address value of ‘1°. In this case, for example,
the front pointer and the rear pointer each indicate the first
node N1.

FIG. 8 illustrates a schematic diagram of an exemplary data
push operation of the circular queue shown in FIG. 7. An
exemplary operation of writing data into the circular queue
may be referred to as “data push operation”. As an example,
a case of writing data into the first node N1 and the second
node N2 is illustrated in FIG. 8.

Referring to FIG. 8, an address value of the front pointer
may increase when data is written. The rear pointer may be
maintained at the same address value.

For example, when data is written into the first node N1 and
the second node N2, the front pointer may have an address
value of “3’. That is, an address value of the front pointer may
increase from ‘1’ to ‘3’. In one or more embodiments, an
address value of the rear pointer may be maintained at ‘1°. As
a result, the front pointer and the rear pointer may have
different address values when data is stored in the circular
queue.

FIG. 9 illustrates a schematic diagram of an exemplary data
pop operation of a circular queue. An operation of erasing
data at a node of the circular queue may be referred to as “data
pop operation”. As an example, a case of erasing data at a first
node N1 and a second node N2 is illustrated in FIG. 9.

Referring to FIG. 9, an address value of the rear pointer
increases when data is erased. In this case, the front pointer is
maintained at the same address value.

In one or more embodiments, a multi-processor device
may write data into a reception region RX or a transmission
region TX of a TCM using a circular queue explained in
FIGS.7t09.

In this case, an address value of a front pointer of the
circular queue and an address value of a rear pointer of the
circular queue may be managed by different processors,
respectively. For example, the address value of the front
pointer may be managed by a processor performing a data
push operation and the address value of the rear pointer may
be managed by a processor performing a data pop operation.

By enabling the address values of the front pointer and the
rear pointer to be managed by different processors, one or
more embodiments of the multi-processor device may not
need a semaphore for protecting the front pointer and the rear
pointer.

Referring back to FIG. 1, e.g., an exemplary scenario of
data being written into a circular queue of the transmission
region 122 of the first TCM 120 is described below. More
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particularly, an exemplary scenario in which a data push
operation is performed by the first processor 110 is described
below. In such embodiments, the first processor 110 may
increase an address value of a front pointer. Additionally, the
first processor 110 may transmit an interrupt signal to the
second processor 130.

The second processor 130 may access the transmission
region 122 of the first TCM 120 in response to an interrupt
signal. At this point, the second processor 130 may copy data
written into the circular queue of the transmission region 122
of'the first TCM 120 to the reception region 141 of the second
TCM 140. The second processor 130 may perform a data pop
operation and increase an address value of the rear pointer.

As another example, referring to FIG. 4, an exemplary
scenario of data being written into a circular queue of the
transmission region 222 of the first TCM 220 is described.
More particularly, an exemplary scenario in which a data push
operation is performed by the first processor 210 is described
below. In this case, the first processor 210 may increase an
address value of the front pointer. Additionally, the first pro-
cessor 210 may transmit a flag signal to the DMA 250.

In one or more embodiments employing a circular queue,
e.g., as explained in FIGS. 7 to 9, it may be determined
whether data is written into a reception region RX or a trans-
mission region TX of a TCM, by determining whether
address values of a front pointer and a rear pointer are iden-
tical to each other.

Referring to FIG. 1, in one or more embodiments, the first
processor 110 may not generate an interrupt signal. In such
embodiments, the second processor 130 may frequently
access the transmission region 122 of the first TCM 120. The
second processor 130 may determine whether address values
of'the front pointer and the rear pointer of the reception region
122 of the first TCM 120 are identical to each other.

When the address values of the front pointer and the rear
pointer are different from each other, the second processor
130 may determine that data is written into the reception
region 122 of the first TCM 120. In one or more embodiments,
the second processor 130 may copy data written into a circu-
lar queue of the transmission region 122 of the first TCM 120
to the reception region 141 of the second TCM 140. When the
address values of the front pointer and the rear pointer are
identical to each other, the second processor 130 may deter-
mine that data is written into the transmission region 122 of
the first TCM 120.

As another example, referring to FIG. 4, in one or more
embodiments, the first processor 210 may not generate a flag
signal. In such embodiments, the DMA 250 may frequently
access the transmission region of the first TCM 220. In such
embodiments, the DMA 250 may determine whether address
values of the front pointer and the rear pointer are identical to
each other.

When the address values of the front pointer and the rear
pointer are different from each other, the DMA 250 may
determine that data is written into the transmission region 222
of the first TCM 220. In this case, the DMA 250 may copy
data written into a circular queue of the transmission region
222 of the first TCM 220 to the reception region 241 of the
second TCM 240. When the address values of the front
pointer and the rear pointer are identical to each other, the
DMA 250 may determine that data is not written into the
transmission region 222 of the first TCM 220.

FIG. 10 illustrates a flowchart of an exemplary embodi-
ment of an inter-process communication operation of a multi-
processor device. More particularly, an inter-process commu-
nication (IPC) operation employing a frequent access of a
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tightly coupled memory (TCM) scenario will be exemplarily
described below with reference to FIG. 10.

AtS310,a TCM may be accessed. As an example, referring
to FIG. 1, the second processor 130 may frequently access the
transmission region 122 of the first TCM 120. As another
example, referring to FIG. 4, the DMA 250 may frequently
access the transmission region 222 of the first TCM 220.

At 8320, address values of a front pointer and a rear pointer
of'the TCM may be checked. As an example, referring to FIG.
1, the second processor 130 may check an address value of the
front pointer of the transmission region 122 of the first TCM
120 and an address value of the rear pointer of the transmis-
sion region 122 ofthe first TCM 120. As another example, the
DMA 250 may check an address value of the front pointer of
the transmission region 222 of the first TCM 220 and an
address value of the rear pointer of the transmission region
222 of the first TCM 220.

At 8330, it is determined whether the address values of the
front pointer and the rear pointer of the respective TCM are
identical to each other.

When the address values of the front pointer and the rear
pointer are identical to each other, an inter-process commu-
nication (IPC) operation may be performed (S340). More
particularly, e.g., referring to FIG. 1, the second processor
130 may copy data written into the transmission region 122 of
the first TCM 120 to the reception region 141 of the second
TCM 140. The second processor 130 may process the data
copied to the reception region 141 of the second TCM 140. As
another example, referring to FIG. 4, e.g., the DMA 250 may
copy data written into the transmission region 222 of the first
TCM 220 to the reception region 241 of the second TCM 240.
The second processor 230 may process the data copied to the
reception region 241 of the second TCM 240.

When the address values of the front pointer and the rear
pointer are different from each other, the TCM may be re-
accessed with a predetermined time lag (S310).

One or more embodiments of a multi-processor device
employing frequent accessing of a TCM may determine
whether data is stored in the TCM by determining whether
address values of a front pointer and a rear pointer are iden-
tical to each other. That is, one or more embodiments of a
multi-processor device may determine whether data is stored
in the TCM without directly reading data stored in the TCM.
Thus, one or more embodiments of a multi-processor device
may provide improved data processing speed.

One or more embodiments of a multi-processor device
employing one or more features described herein may be
applied to various types of products. For example, one or
more embodiments of a multi-processor device may be
applied to electronic devices such as a personal computer
(PC), a digital camera, a camcorder, a cellular phone, an MP3
player, a portable multimedia player (PMP), a playstation
portable (PSP), and a personal digital assistant (PDA), etc.
Further, one or more embodiments of a multi-processor
device may be applied to a controller of a storage device such
as a memory card, a USB memory, and a solid state drive
(SSD).

FIG. 11 illustrates a block diagram of an exemplary
embodiment of an electronic device 1000 including a multi-
processor device employing one or more features described
herein, e.g., the multi-processor device 100, 200 of FIGS. 1
and FIG. 4, respectively. The electronic device 1000 may be
embodied as a personal computer (PC) or a portable elec-
tronic device such as a notebook computer, a cellular phone,
a personal digital assistant (PDA), a digital camera, etc.

Referring to FIG. 11, the electronic device 1000 may
include a semiconductor memory device 1100, a power sup-

20

25

35

40

45

12

ply 1200, an auxiliary power supply 1250, a central process-
ing unit (CPU) 1300, a random access memory (RAM) 1400,
and a user interface 1500. The semiconductor memory device
1100 may include a flash memory 1110 and a memory con-
troller 1120.

The CPU 1300 shown in FIG. 11 includes a multi-proces-
sor device according to an embodiment of the inventive con-
cept. Thus, the CPU 1300 may perform inter-process com-
munication (IPC) using a tightly coupled memory (TCM).
Since a shared memory is not used, one or more embodiments
may eliminate a write waiting time and data processing speed
may be improved.

FIG. 12 illustrates a block diagram of an exemplary
embodiment of a data storage device 2000 including a multi-
processor device employing one or more features described
herein, e.g., the multi-processor device 100, 200 of FIG. 1 and
FIG. 4, respectively. As illustrated, the data storage device
2000 may include a memory controller 2100 and a flash
memory 2200. The data storage device 2000 may include one,
some or all storage media such as memory cards (e.g., SD,
MMC, etc.) and/or removable storage devices (e.g., USB
memory, etc.).

Referring to FIG. 12, the memory controller 2100 may
include a central processing unit (CPU) 2110, a host interface
2120, arandom access memory (RAM) 2130, a flash interface
2140, and an auxiliary power supply 2150. The auxiliary
power supply 2150 may be disposed inside or outside the
memory controller 2100.

The data storage device 2000 may be connected to a host to
be used. The data storage device 2000 may receive and/or
transmit data from or to the host through the host interface
2120. In addition, the data storage device 2000 may receive or
transmit data from and/or to the flash memory 2200 through
the flash interface 2140. The data storage device 2000 may
receive power from the host to perform an internal operation.
The data storage device 2000 shown in FIG. 12 may, e.g., be
employed as the semiconductor memory device 1100 shown
in FIG. 11.

The CPU 2100 shown in FIG. 12 may include a multi-
processor device employing one or more features described
herein. Thus, the CPU 2100 may perform inter-process com-
munication (IPC) using a tightly coupled memory (TCM).
Since a shared memory is not used, one or more embodiments
may reduce and/or eliminate a write waiting time and data
processing speed may be improved.

While the inventive concept has been described with ref-
erenceto exemplary embodiments, it will be apparent to those
skilled in the art that various changes and modifications may
be made without departing from the spirit and scope of the
inventive concept. Therefore, it should be understood that the
above embodiments are not limiting, but illustrative. Thus,
the scope of the inventive concept is to be determined by the
broadest permissible interpretation of the following claims
and their equivalents, and shall not be restricted or limited by
the foregoing description.

What is claimed is:

1. A data storage device, comprising:

a nonvolatile memory; and

a controller to control the nonvolatile memory, wherein the

controller of the data storage device includes:

a first processor including a first register;

a second processor including a second register;

a direct memory access (DMA);

a bus commonly connected to the first processor, the
second processor, and the DMA;

a first memory connected to the first processor and
coupled to the bus through the first processor; and
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a second memory connected to the second processor and
coupled to the bus through the second processor;
wherein

the DMA is to manage data exchange between the first
processor and the second processor through the bus
using the first memory and the second memory when an
inter-process communication (IPC) operation is per-
formed, wherein

the first memory includes a first transmission region to
store a first data to be transmitted to the second memory
and a first reception region to store a second data
received from the second memory, and

the second memory includes a second transmission region
to store the second data to be transmitted to the first
memory and a second reception region to store the first
data received from the first memory, and

the DMA includes a buffer to temporarily store data
received from at least one of the first transmission region
and the second transmission region, wherein

the IPC operation including:

a first writing operation during which the first processor
stores the first data in the first transmission region from
the first register of the first processor, and

a second writing operation during which the second pro-
cessor stores the second data in the second transmission
region from the second register of the second processor.

2. The data storage device as claimed in claim 1, wherein

a writing operation to the first transmission region of the
first memory and the second transmission region of the
second memory is performed under control of the first
processor and the second processor, respectively,

a writing operation to the first reception region of the first
memory and the second reception region of the second
memory is performed under control of the DMA,

a reading operation to the first transmission region of the
first memory and the second transmission region of the
second memory is performed under control of the DMA,
and

a reading operation to the first reception region of the first
memory and the second reception region of the second
memory is performed under control of the first processor
and the second processor, respectively.

3. The data storage device as claimed in claim 2, wherein
the DMA is to copy the first data stored in the first transmis-
sion region of the first memory to the buffer and then store the
copied first data in the buffer to the second reception region of
the second memory.

4. The data storage device as claimed in claim 3, wherein

after the first processor stores the first data into the first
transmission region of the first memory, then the first
processor transmits a flag signal to the DMA, and
wherein

the DMA is to copy the first data stored in the first trans-
mission region of the first memory in response to the flag
signal.

5. The data storage device as claimed in claim 1, wherein
data in the first memory is managed by using a queue, and the
queue comprises:

at least two nodes to store the first data in the first trans-
mission region of the first memory; and

first and second pointers to indicate the at least two nodes,

wherein the first and second pointers indicate different
node respectively when the first data to be transmitted
into the second reception region of the second memory is
being stored in the first transmission region of the first
memory.
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6. The data storage device as claimed in claim 5, wherein
the first processor is to store the first data to be transmitted
into the second reception region of the second memory in the
first transmission region of the first memory and then change
the node indicated by the first pointer.
7. The data storage device as claimed in claim 6, wherein
the DMA comprises a buffer to temporarily store at least one
of'the first data received from the first transmission region of
the first memory and the second data received from the sec-
ond transmission region of the second memory, and
wherein the DMA is to copy the first data stored in the first
transmission region of the first memory to the buffer and
then store the copied first data in the buffer into the
second reception region of the second memory, and

wherein the DMA is to change the node indicated by the
second pointer after copying the first data stored in the
first transmission region of the first memory.

8. The data storage device as claimed in claim 5, wherein
the DMA is to check the nodes indicated by the first and
second pointers and determine whether the first data to be
transmitted into the second reception region of the second
memory is being stored in the first transmission region of the
first memory by checking the nodes indicated by the first and
second pointers are different.

9. The data storage device as claimed in claim 8, wherein
the first processor is to change the node indicated by the first
pointer after storing the first data to be transmitted into the
second reception region of the second memory in the first
transmission region of the first memory, and the DMA is to
change the node indicated by the second pointer after copying
and transferring the first data in the first transmission region
of the first memory to the second reception region of the
second memory, and

wherein the DMA is to copy the first data in the first

transmission region of the first memory when the node
indicated by the first pointer is different from the node
indicated by the second pointer.
10. An inter-process communication (IPC) method of a
data storage device including a nonvolatile memory and a
controller to control the nonvolatile memory, the controller of
the data storage device including a first processor having a
first register, a second processor having a second register, a
direct memory access (DMA), a bus commonly connected to
the first processor, the second processor and the DMA, a first
memory connected to the first processor and coupled to the
bus through the first processor, and a second memory con-
nected to the second processor and coupled to the bus through
the second processor, wherein the DMA is to manage data
exchange between the first processor and the second proces-
sor through the bus when the IPC operation is performed, and
wherein the first memory includes a first transmission region
to store a first data to be transmitted to the second memory and
a first reception region to store a second data received from
the second memory, and the second memory includes a sec-
ond transmission region to store the second data to be trans-
mitted to the first memory and a second reception region to
store the first data received from the first memory, and the
DMA includes a buffer to temporarily store data received
from at least one of the first transmission region and the
second transmission region, the IPC method comprising:
storing the first data in the first transmission region of the
first memory from the first register by the first processor;

storing the second data in the second transmission region of
the second memory from the second register by the
second processor;
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copying the first data stored in the first transmission region
of the first memory into the second reception region of
the second memory by the DMA; and

copying the second data stored in the second transmission

region of the second memory into the first reception
region of the first memory by the DMA.

11. The IPC method as claimed in claim 10, wherein copy-
ing the first data stored in the first transmission region of the
first memory into the second reception region of the second
memory comprising:

copying the first data stored in the first transmission region

of the first memory to the bufter of the DMA; and then
storing the copied first data in the buffer of the DMA to the
second reception region of the second memory.
12. The IPC method as claimed in claim 10, further com-
prising:
transmitting a flag signal to the DMA after storing the first
data in the first transmission region of the first memory
connected to the first processor by the first processor;

copying the first data stored in the first transmission region
of'the first memory to the buffer of the DMA in response
to the flag signal; and

storing the copied first data in the buffer of the DMA to the

second reception region of the second memory.

13. The IPC method as claimed in claim 10, wherein data in
the first memory is managed by using a queue, and the queue
comprises at least two nodes to store the first data in the first
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transmission region of the first memory and first and second
pointers to indicate the at least two nodes,

the IPC method further comprising:

changing the node indicated by the first pointer after stor-

ing the first data to be transmitted into the second recep-
tion region of the second memory in the first transmis-
sion region of the first memory by the first processor.

14. The IPC method as claimed in claim 13, further com-
prising:

changing the node indicated by the second pointer after

copying the first data stored in the first transmission
region of the first memory to the second reception region
of the second memory by the DMA.

15. The IPC method as claimed in claim 14, further com-
prising:

comparing the nodes indicated by the first and second

pointers; and

determining whether the first data to be transmitted into the

second reception region of the second memory is being
stored in the first transmission region of the first
memory.

16. The IPC method as claimed in claim 15, wherein the
DMA is to copy the first data in the first transmission region
of the first memory when the node indicated by the first
pointer is different from the node indicated by the second
pointer.



